如图,抛物线 y = a x 2 + 3 2 x + c 与 x 轴交于点 A , B ,与 y 轴交于点 C ,已知 A , C 两点坐标分别是 A ( 1 , 0 ) , C ( 0 , − 2 ) ,连接 AC , BC .
(1)求抛物线的表达式和 AC 所在直线的表达式;
(2)将 ΔABC 沿 BC 所在直线折叠,得到 ΔDBC ,点 A 的对应点 D 是否落在抛物线的对称轴上,若点 D 在对称轴上,请求出点 D 的坐标;若点 D 不在对称轴上,请说明理由;
(3)若点 P 是抛物线位于第三象限图象上的一动点,连接 AP 交 BC 于点 Q ,连接 BP , ΔBPQ 的面积记为 S 1 , ΔABQ 的面积记为 S 2 ,求 S 1 S 2 的值最大时点 P 的坐标.
试题篮