如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于点 A ( − 4 , 0 ) , B ( 2 , 0 ) ,与 y 轴交于点 C ( 0 , 4 ) ,线段 BC 的中垂线与对称轴 l 交于点 D ,与 x 轴交于点 F ,与 BC 交于点 E ,对称轴 l 与 x 轴交于点 H .
(1)求抛物线的函数表达式;
(2)求点 D 的坐标;
(3)点 P 为 x 轴上一点, ⊙ P 与直线 BC 相切于点 Q ,与直线 DE 相切于点 R .求点 P 的坐标;
(4)点 M 为 x 轴上方抛物线上的点,在对称轴 l 上是否存在一点 N ,使得以点 D , P , M , N 为顶点的四边形是平行四边形?若存在,则直接写出 N 点坐标;若不存在,请说明理由.
试题篮