如图,在平面直角坐标系中, ∠ ACB = 90 ° , OC = 2 OB , tan ∠ ABC = 2 ,点 B 的坐标为 ( 1 , 0 ) .抛物线 y = − x 2 + bx + c 经过 A 、 B 两点.
(1)求抛物线的解析式;
(2)点 P 是直线 AB 上方抛物线上的一点,过点 P 作 PD 垂直 x 轴于点 D ,交线段 AB 于点 E ,使 PE = 1 2 DE .
①求点 P 的坐标;
②在直线 PD 上是否存在点 M ,使 ΔABM 为直角三角形?若存在,求出符合条件的所有点 M 的坐标;若不存在,请说明理由.
试题篮