如图①,在 ΔABC 中, ∠ BAC = 90 ° , AB = AC ,点 E 在 AC 上(且不与点 A , C 重合),在 ΔABC 的外部作 ΔCED ,使 ∠ CED = 90 ° , DE = CE ,连接 AD ,分别以 AB , AD 为邻边作平行四边形 ABFD ,连接 AF .
(1)请直接写出线段 AF , AE 的数量关系 ;
(2)将 ΔCED 绕点 C 逆时针旋转,当点 E 在线段 BC 上时,如图②,连接 AE ,请判断线段 AF , AE 的数量关系,并证明你的结论;
(3)在图②的基础上,将 ΔCED 绕点 C 继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
试题篮