如图, ⊙ M 的圆心 M ( − 1 , 2 ) , ⊙ M 经过坐标原点 O ,与 y 轴交于点 A .经过点 A 的一条直线 l 解析式为: y = − 1 2 x + 4 与 x 轴交于点 B ,以 M 为顶点的抛物线经过 x 轴上点 D ( 2 , 0 ) 和点 C ( − 4 , 0 ) .
(1)求抛物线的解析式;
(2)求证:直线 l 是 ⊙ M 的切线;
(3)点 P 为抛物线上一动点,且 PE 与直线 l 垂直,垂足为 E ; PF / / y 轴,交直线 l 于点 F ,是否存在这样的点 P ,使 ΔPEF 的面积最小.若存在,请求出此时点 P 的坐标及 ΔPEF 面积的最小值;若不存在,请说明理由.
试题篮