已知抛物线 y 1 = a x 2 + bx − 4 ( a ≠ 0 ) 与 x 轴交于点 A ( − 1 , 0 ) 和点 B ( 4 , 0 ) .
(1)求抛物线 y 1 的函数解析式;
(2)如图①,将抛物线 y 1 沿 x 轴翻折得到抛物线 y 2 ,抛物线 y 2 与 y 轴交于点 C ,点 D 是线段 BC 上的一个动点,过点 D 作 DE / / y 轴交抛物线 y 1 于点 E ,求线段 DE 的长度的最大值;
(3)在(2)的条件下,当线段 DE 处于长度最大值位置时,作线段 BC 的垂直平分线交 DE 于点 F ,垂足为 H ,点 P 是抛物线 y 2 上一动点, ⊙ P 与直线 BC 相切,且 S ⊙ P : S ΔDFH = 2 π ,求满足条件的所有点 P 的坐标.
试题篮