已知:如图1,在锐角 ΔABC 中, AB = c , BC = a , AC = b , AD ⊥ BC 于 D .
在 Rt Δ ABD 中, sin ∠ B = AD c ,则 AD = c sin ∠ B ;
在 Rt Δ ACD 中, sin ∠ C = ,则 AD = ;
所以, c sin ∠ B = b sin ∠ C ,即, b sin B = c sin C ,
进一步即得正弦定理: a sin A = b sin B = c sin C (此定理适合任意锐角三角形).
参照利用正弦定理解答下题:
如图2,在 ΔABC 中, ∠ B = 75 ° , ∠ C = 45 ° , BC = 2 ,求 AB 的长.
试题篮