如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ( 0 , 3 ) ,且此抛物线的顶点坐标为 M ( − 1 , 4 ) .
(1)求此抛物线的解析式;
(2)设点 D 为已知抛物线对称轴上的任意一点,当 ΔACD 与 ΔACB 面积相等时,求点 D 的坐标;
(3)点 P 在线段 AM 上,当 PC 与 y 轴垂直时,过点 P 作 x 轴的垂线,垂足为 E ,将 ΔPCE 沿直线 CE 翻折,使点 P 的对应点 P ' 与 P 、 E 、 C 处在同一平面内,请求出点 P ' 坐标,并判断点 P ' 是否在该抛物线上.
试题篮