某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比 5 - 1 2 ≈ 0 . 618 .如图,圆内接正五边形 ABCDE ,圆心为 O , OA 与 BE 交于点 H , AC 、 AD 与 BE 分别交于点 M 、 N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)
(1)求证: ΔABM 是等腰三角形且底角等于 36 ° ,并直接说出 ΔBAN 的形状;
(2)求证: BM BN = BN BE ,且其比值 k = 5 - 1 2 ;
(3)由对称性知 AO ⊥ BE ,由(1)(2)可知 MN BM 也是一个黄金分割数,据此求 sin 18 ° 的值.
试题篮