定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______。
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.
- 题型:14
- 难度:中等
- 浏览:2101
把直线沿y轴方向平移m个单位后,与直线
的交点在第二象限,则m的取值范围是()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
- 题型:1
- 难度:中等
- 浏览:208
定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:的图象向左平移2个单位,再向下平移1个单位得到
的图象,则
是y与x的“反比例平移函数”.
(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.
(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”的图象经过B、E两点.则这个“反比例平移函数”的表达式为 ;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.
(3)在(2)的条件下,已知过线段BE中点的一条直线l交这个“反比例平移函数”图象于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.
- 题型:14
- 难度:中等
- 浏览:1661
如图,抛物线关于直线
对称,与坐标轴交于A、B、C三点,且AB=4,点D
在抛物线上,直线
是一次函数
的图象,点O是坐标原点。
(1)求抛物线的解析式;
(2)把抛物线向左平移1个单位,再向上平移4个单位,所得抛物线与直线交于M、N两点,问在y轴负半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.
- 题型:0
- 难度:中等
- 浏览:1989
如图,将菱形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:
①△A1AD1≌△CC1B;
②当四边形ABC1D1是矩形时,x=;
③当x=2时,△BDD1为等腰直角三角形;
④(0<x<
)。
其中正确的是 (填序号)。
- 题型:2
- 难度:中等
- 浏览:2119